top of page

Deep Learning

  Deep learning (also known as deep structured learning or hierarchical learning) is the application of artificial neural networks (ANNs) to learning tasks that contain more than one hidden layer. Deep learning is part of a broader family of machine learning methods based on learning data representations, as opposed to task-specific algorithms. Learning can be supervised, partially supervised or unsupervised.

Some representations are loosely based on interpretation of information processing and communication patterns in a biological nervous system, such as neural coding that attempts to define a relationship between various stimuli and associated neuronal responses in the brain.[1] Research attempts to create efficient systems to learn these representations from large-scale, unlabeled data sets.

 

Deep learning architectures such as deep neural networksdeep belief networks and recurrent neural networks have been applied to fields including computer visionspeech recognitionnatural language processing, audio recognition, social network filtering, machine translation and bioinformatics where they produced results comparable to and in some cases superior to human experts.

 

 

Source of the above article : www.wikipedia.org

2017 MPLA. ALL RIGHTS RESERVED.

  • 525, 2nd Engineering building
    152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea

  • http://mlpa.dankook.ac.kr

About MLPA

Other Sites

bottom of page